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ABSTRACT  
 
Frequency response functions (FRFs), typically calculated by 
means of the Fourier transform, are used extensively 
throughout structural dynamics to identify modal 
characteristics of a structure. Fourier methods work well with 
linear systems, but have limitations when nonlinearities are 
present, largely due to their inability to examine non-
stationary data. A nonlinear system is often characterized by 
the variation of its structural response in time. More recently, 
wavelets have been introduced as an alternative method to 
FRF calculation. Unlike Fourier methods, wavelets are a 
time/frequency transform, allowing for the creation of a time-
varying FRF. This paper explores the use of wavelet-based 
FRFs to identify nonlinear behavior in an eight degree-of-
freedom spring-mass structure. Examination of temporal 
changes in the higher frequency range are used to determine 
the location of the system's nonlinearities. 
 
NOMENCLATURE 
 
Ψ(t)  Mother wavelet  

a  Scaling parameter 

b  Translation parameter 

Wx(a,b)  Wavelet transform 

FRF  Frequency response function 

H(w)  Fourier-based FRF 

Hw(f,t)  Wavelet-based FRF 

ST  Standard Deviation in time of wavelet FRF 

  summed over all frequencies 
 
 INTRODUCTION 
 
Every real system will exhibit some degree of non-linear 
behavior. Nonlinearities are common in flexible structures, 
systems with friction, or ones with compliant materials and 
may be categorized as geometric, kinematic, or material-
based.  In many circumstances, an increase in the 
nonlinearity of a system can indicate a change that might 
affect the health or operation of the system.  Finding 

methods that are able to identify and locate these changes 
are of great importance.   
 
Fourier-based methods have been used extensively 
throughout structural dynamics for the extraction of modal 
properties.  Specifically, frequency response functions are 
often used as a means for identification and comparison of 
the averaged modal characteristics of a structure.  For linear 
systems, this has been a successful measurement device, 
but does not typically perform well when nonlinearities are 
present.  A nonlinear system can be identified by the 
variation of its structural response in time.  With Fourier-
based methods, the frequency content of the signal is 
typically averaged over a large number of data blocks, 
smearing out characteristics, and eradicating all time 
information. Time/frequency transformations alleviate this 
problem by providing information on how the frequency 
content of a signal changes in time.  Of these 
transformations, wavelets have been gaining popularity in 
recent years due to the attractive inverse relationship of 
frequency and time.  At lower frequencies, a fine frequency 
resolution is provided with a coarser time resolution.  This 
relationship is inverted at higher frequencies, where time 
resolution is increased and frequency decreased.  
Examination of changes in the higher frequencies of an FRF 
is a good indication of the occurrence of certain types of 
nonlinearities present in a system.  Wavelets naturally scale 
themselves appropriately for this type of analysis. 
 
This paper seeks to identify damage induced into an 8-dof 
spring-mass test system.  This system, explained in detail in 
[1], consists of eight masses sliding on a steel rod, 
interconnected by linear springs.  Damage is simulated in the 
system by the addition of small bumpers that limit the 
compression of the springs. Morlet wavelets are investigated 
as a means for identifying the damage in the system.  The 
Morlet wavelet is a complex valued transform that captures 
both the magnitude and phase characteristics of a signal 
while also retaining its temporal nature. This transform can 
be used to form frequency response functions whose 
temporal nature can be used to identify damage. 
 
This paper builds upon the work performed by Hartin [1] on 
applying wavelet-based FRFs to the analysis of a bilinear 
structure.  In this paper, Hartin shows how wavelet FRFs can 
be used to identify the location of a nonlinearity in a 
simulated system using bifurcated modes.  His work shows 



  

much promise for the use of wavelet-based FRFs in the 
identification of nonlinearities or damage present in a 
system.    
 
Other approaches have been used to analyze this eight 
degree-of-freedom structure or ones similiar, including 
papers by Sohn [2], Bement and Farrar [3], Wait, et al [4], 
and Hunter [5].  The methods used in these papers include 
time-based analysis of the system response and statistical 
methods for evaluating the modal properties.  The results of 
this work have been promising, but wavelets offer a new 
avenue of examination into the time variability of the spectral 
nature of the system, which these approaches cannot take 
advantage of. 
 
 METHOD 
 
In the example that will be examined in this paper, a 
nonlinearity is induced into a system through contact 
bumpers.  This impact-type nonlinearity adds high frequency 
content to the response spectrum of the system.  Traditional 
Fourier methods used to determine the frequency response 
identify the lower frequency components quite well, which is 
where the fundamental modes of the system are located.  
The high frequency content, however, is usually much lower 
in magnitude and therefore harder to identify.  The system 
itself works as a weak low-pass filter, primarily transmitting 
the lower frequency content. 
 
Even if a definite change in the frequency spectrum can be 
identified with and without the nonlinearity present, further 
difficulty comes in trying to identify its exact location.   Since 
the system analyzed in this paper is essentially discrete (all 
degrees of freedom are measured), traditional methods that 
analyze the frequency spectrum have great potential to 
locate the damage.  For more realistic systems with limited 
measurement degrees of freedom, however, this becomes 
more difficult.  
 
By looking at the standard deviation in time of the high 
frequency content, the exact location of the damage can be 
seen.  Wavelets are able to show how the FRF changes in 
time and this will be used to identify the location of the 
nonlinearity or damage in the system.   
 
This identification procedure is specific to impact type 
nonlinearities or any other feature that would excite high 
frequency vibrations in a system.  But, usually the best 
features for damage identification, or in this case nonlinearity 
detection, are those that are application specific.   
 
WAVELET BASED FRFS 
 
Wavelets are mathematical functions that decompose a 
signal into scaled coefficients using a set of wavelet basis 
functions.  This is very similar to Fourier transforms which 
use dilations of sinusoids as the bases.  The family of basis 
functions used for wavelet analysis is created by both 
dilations (scaling) and translations (in time) of a “mother 
wavelet”, thereby providing both time and frequency 
information about the signal being analyzed.  There are 
many different functions that can be called wavelets.  In this 
report, the Morlet wavelet is used: 
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which is very similar to  a sinusoid with a Gaussian envelope.  
The term ƒ0 is the center frequency of the sinusoid and σ 
determines the width of the frequency band.  The wavelet 
transform is obtained by convolving the signal x(t) with the 
translations (b) and dilations (a) of the mother wavelet: 
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Since the Morlet wavelet is able to compute both magnitude 
and phase characteristics of a signal while also retaining its 
temporal nature, it can be used to form wavelet-based 
frequency response functions (or transmissibility functions) 
that retain the variability of the system in time.  The complex 
form of the Morlet wavelet is unique compared to other 
wavelets, and allows for the computation of modal 
properties. 
 
The frequency response function relates the output response 
of a system to its input and is usually calculated using the 
Fourier transform: 
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The Fourier Transform has the unique characteristic of 
transforming a convolution into a multiplication, which allows 
for the simple formula shown above.  Time domain methods, 
and non-complex wavelet-based methods do not have this 
quality and are therefore computationally expensive.  This is 
compounded further when dealing with noisy data.  The most 
common method for calculating an FRF for noisy data is the 
H1 formulation which assumes that noise is present on the 
output signal only: 
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The H1 FRF may also be formed using a complex wavelet 
transform.   Transforms of the input and response signals 
are calculated with Equation 3 and then used to form the 
spectral densities  (Y(w)X*(w) and X(w)*X(w)) shown in 
Equation 5: 
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This formulation was implemented numerically using the 
method detailed by Wang and McFadden [6] who utilize 
Fourier transforms to perform the integration in Equation 3. 
 
The time resolution of the wavelet-based FRF is traded-off 
with its frequency resolution. The center frequency ƒ0 and 
bandwidth, which determines the scale parameter of the 



  

wavelet transform, can be varied to develop an optimal time-
frequency resolution. 
 
At one extreme, one can obtain an FRF with absolutely no 
time resolution, which will look almost identical to the FRF 
formed by the more traditional Fourier transform.  This can 
be achieved by averaging the wavelet-based FRF in the time 
domain, which allows for a smoother function in the 
frequency domain.  Averaging is performed on the phase 
and magnitude of the FRF.  Equation 7 shows how time 
averaging of the magnitude of the FRF is performed with an 
ensemble length of size m: 
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EXPERIMENTAL ANALYSIS 
 
An eight degree-of-freedom system (Figures 1 and 2) was 
constructed to study the effectiveness of various vibration-
based damage identification techniques [1].  The system 
consists of eight masses sliding on a steel rod 
interconnected by linear springs.   Non-linear damage is 
simulated by placing rods (bumpers) on one mass, which 
limits the amount of relative motion between it and the 
adjacent mass.  A small clearance is maintained between the 
rods and adjacent masses and impact occurs when the mass 
translates further than the clearance.  This impact simulates 
spring deterioration which would permit contact between 
adjacent masses to occur.  It could also approximate the 
impact from the opening and closing of a crack during 
vibration or the rattling of a loose joint. The degree of 
damage can be altered by changing the size of the bumpers, 
hence allowing for a larger or smaller clearance between 
adjacent masses.   
 

 
 
 

Figure 1:   Picture of Eight Degree-of-Freedom System 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2:  Schematic of Eight Degree-of-Freedom System 
and Simulated Damage 

 
 
The system was excited at the first degree of freedom using 
a Gaussian random signal supplied by a shaker along the 
axis of the steel rod.  Acceleration responses were measured 
at each of the eight degrees of freedom using 
accelerometers.  A series of experiments were run with 
varying excitation magnitudes, clearance levels, and bumper 
locations.  Bumpers were placed at three different positions: 
between masses 1 and 2, masses 5 and 6, and masses 7 
and 8.  For each of these locations, eight experiments were 
analyzed as summarized in Table 1.  A range of excitation 
voltages were actually used, but only the 6 and 7 volt levels 
will be analyzed due to their good measurement quality as 
compared to the other levels. 
 
 

Case Bumper 
Clearance 

Excitation 
Voltage 

1 No Bumper 7V 
2 No Bumper 6V 
3 0 mm 7V 
4 0.2 mm 7V 
5 0.4 mm 7V 
6 0 mm 6V 
7 0.2 mm 6V 
8 0.4 mm 6V 

 
Table 1:  List of Experimental Cases Performed 

 
 
 

FRF Estimation 
 
Frequency response function estimates for the system 
without any bumpers present are given in Figure 3 for the 
acceleration at mass 1 due to the input force.  The Fourier 

Force 
Transducer 

Accelerometer Aluminum Mass 

Polished Steel Rod 

Bumpers 



  

based estimate was calculated by averaging 8 ensembles  
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Figure 3: Frequency Response Function Magnitude for Input 

1/Output 1Without Bumpers (No Damage) 
 

 
of 512 points each.  For comparison, the wavelet method 
was used to form a purely frequency-domain estimate of the 
FRF by averaging-out all the time information.  This is done 
using Equation 7 with an ensemble length of 4096, or the 
entire time-span of the function.  
 
Unlike the work done by Hartin [1], this data is not simulated 
and therefore contains noise, which necessitates the time-
averaging of the wavelet-based FRF to obtain a smooth 
function.  Once averaging is done, the wavelet and Fourier-
based FRFs are very similar. 
 
The time-frequency representation of the wavelet-based FRF 
using only 8 ensemble-averages in time over 0.64 seconds is 
shown in Figure4a.  The five most prominent modes of the 
system are clearly visible when compared to the traditional 
frequency domain plot of the FRF discussed in the last 
paragraph (shown in Figure 4b).  The lack of any high 
frequency content above the structural modes is 
characteristic of a linear spring-mass system.  The same 
FRF is examined in Figure 4c with a bumper added between 
degrees of freedom 1 and 2.  The presence of this 
nonlinearity obviously induces high frequency response in 
the structure as well as increasing the variability of the 
response in time.  The characteristics shown in this plot are 
common for all of the damaged cases.   
 
Damage Assessment  
 
The impact of the bumper with the adjacent mass will cause 
a spike in the time response of the system, thus exciting a 
wide range of frequencies.  This type of damage also causes 
the system to exhibit nonlinear characteristics, one of which 
is the excitation of frequencies other than the fundamental 
modes of the system.  Therefore, to assess and locate the 
nonlinearity or damage in the system, the upper half of the 
frequency band of the FRF will be examined (128-256 hz).   
With the ability of the wavelet transform to also provide time 

resolution to the FRF, the variability of this function in time 
will be used as an additional element for the identification of 
damage in the system. 
 
To quantify the amount of time variability there is in the 
higher frequencies, the standard deviation (in time) of the 
FRF at each frequency in the higher frequency band is 
calculated: 
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These values are then summed to obtain the total standard 
deviation across all of the higher frequencies, which will be 
referred to as ST: 
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These calculations were performed for each of the 24 cases 
mentioned above, which include 3 different locations for the 
damage: between masses 1 and 2, masses 5 and 6, and 
masses 7 and 8.   
 
Figure 5a shows the magnitude of the time variability (ST) of 
the FRF at each output location for the 8 cases when 
bumpers are placed between masses 1 and 2.  A high ST 
value follows sensor locations 1 and 2 for all cases.  This 
points towards the presence of a nonlinearity between 
masses 1 and 2.  Similar results are given for bumpers 
placed between masses 5 and 6 (Figure 5b) and masses 7 
and 8 (Figure 5c).   Especially interesting is the ridge of high 
frequency response at locations 7 and 8 in Figure 5c.   
 
Figure 6 slices Figure 5c along sensor location 7 to show the 
relative response for each of the eight cases.  Located on 
the plot are a summary of each case: 7V 0d represents a 7 
volt excitation and no damage, while 7V 2gap represents a 7 
volt excitation with a bumper clearance of 0.2 mm.  From this 
plot, one can see that the standard deviation in the high 
frequencies is low when bumpers are not present (cases 1 
and 2).  Case 3 is the most nonlinear, which has both the 
largest excitation and the smallest clearance between the 
bumpers and the adjacent masses.   
 
The results in Figure 5 show clearly that a nonlinearity is 
occurring and at which sensor location.  The ability for the 
Fourier-based FRF functions to reveal the same information 
was also assessed.  Figure 7 shows the standard deviation 
(in frequency) of the upper half of the FRF frequency band 
when bumpers are placed between masses 7 and 8.  This 
value reveals the magnitude of high frequency content for 
each of the cases.  A ridge of high standard deviation values 
follow sensor location 7, but the relative magnitude between 
it and the other locations is not as large as the wavelet 
calculations (Figure 5c).  Also in Figure 7 is a ridge of high 
standard deviation following location 1.  This indicates that 
there is either a high frequency input at location 1 or that 



  

some nonlinearity at that location has produced some locally 
high frequencies.  This result is common to all of the FRF 
evaluations performed using FFT-based FRFs.  It is not 
understood why this ridge is appearing, but it hampers the 
ability to locate the damage effectively. 
 

 
 

Figure 4:  Contour plot of wavelet-based FRF for input 
1/output 1 without bumper (a), Wavelet-Based FRF  with 
time resolution averaged out (b), and Wavelet-based FRF for 
input 1/output 1 with bumper between DOFS 1 and 2 (c) 
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Figure 5:  ST-value at each sensor location and case 
number for : Bumpers between masses 1 and 2 (a), 
Bumpers between masses 5 and 6 (b), and Bumpers 
between masses 7 and 8 (c) 
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Figure 6:  ST Values at Sensor Location 7 for Wavelet-
Based FRF with Bumpers Between Masses 7 and 8. 
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Figure 7: Standard deviation of the upper frequency range of 
the Fourier-Based FRF with bumpers between masses 7 and 
8. 

 
 
CONCLUSIONS 
 
This paper has shown the possibility of using wavelet-based 
frequency response functions for damage or nonlinearity 
assessment.  The time information obtained by using 
wavelets instead of traditional Fourier transforms to form the 
FRFs allows for a clear indication of where damage is 
occurring in the system.  This example illustrates the ability 
to distinguish damage induced by impact-type nonlinearities.  
This type of damage is of great concern in many 
applications, but this procedure might not readily apply in 
other areas of nonlinearity detection.  The ability to apply this 
procedure to real test data that includes noise is 
encouraging.  Further applications of this procedure to more 
complicated test structures would provide for a more 
insightful evaluation. 
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